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Abstract. The effect of multi-particle Coulomb final state interactions on higher-order intensity correlations
is determined in general, based on a scattering wave function which is a solution of the n-body Coulomb
Schrödinger equation in (a large part of) the asymptotic region of n-body configuration space. In particular,
we study Coulomb effects on the n-particle Bose–Einstein correlation functions of similarly charged particles
and remove a systematic error as big as 100% from higher-order multi-particle Bose–Einstein correlation
functions.

1 Introduction

One of the most fundamental quests of high-energy physics
is the determination of the phase diagram of strongly in-
teracting matter. At high densities and/or temperatures
the quarks are expected to be liberated from their con-
finement within hadrons and a new phase of matter, the
quark gluon plasma (QGP), to be formed. In order to ex-
plore this new phase of matter, the Relativistic Heavy Ion
Collider (RHIC) has been constructed at Brookhaven Na-
tional Laboratory, to collide Au + Au nuclei at s1/2 =
200 AGeV center of mass energy.

One of the new features of RHIC physics will be the
production of 600–1200 charged pions per unit rapidity.
Due to this, the PHENIX and STAR detectors will be
able to determine not only single particle spectra and the
2-particle Bose–Einstein correlations, but also the higher-
order Bose–Einstein correlation functions, which turn out
to be essential even up to 5th order, to be able to distin-
guish experimentally the fully chaotic and the partially
coherent particle sources [1–3]. As partial coherence is
a fundamental aspect of quantum fields, and it can be
related to a possible Bose–Einstein condensation of pion
wave-packets to the wave-packet with the smallest energy
in the rest frame of the source [4], the determination of the
higher-order Bose–Einstein correlation functions at RHIC
is of great theoretical interest [1–3,5–9], as well as a great
experimental challenge.

However, Coulomb (and possibly strong) final state
interactions of the pions play an important rôle in shap-
ing the final multi-particle Bose–Einstein correlation func-
tions. As no consistent and systematic treatment of the
final state interaction of a charged multi-boson system is
available in the literature, the experimental removal of the

Coulomb effects from the n-particle Bose–Einstein corre-
lation functions is based hitherto only on some ad hoc
generalization of the Gamow formula to the multi-particle
case.

In this paper, we propose a straightforward method for
a systematic quantum-mechanical treatment of Coulomb
final state interactions in higher-order Bose–Einstein cor-
relation functions. Although the validity of the method
described below is limited to a certain, albeit large, kine-
matic domain (Ω(n)

0 ) due to the fact that the exact so-
lution of even the 3-body Coulomb scattering problem is
beyond presently available means, we think that the re-
sults presented here represent a first important step to-
wards establishing a link between few-body physics and
Bose–Einstein correlations in high-energy multi-particle
physics. Especially, the new Coulomb wave function cor-
rections indicate that the generalized Gamow correction
method would make a factor of two error in the 5th or-
der Bose–Einstein correlation functions, if the radius pa-
rameters were in the 5–10 fm range, as is characteristic for
heavy ion collisions. If the characteristic radius parameters
were as small as 1 fm, the characteristic size in reactions of
high-energy particle physics, the generalized Gamow fac-
tors would be acceptable, at a 10% level of precision in
the 5th order Bose–Einstein correlation functions.

The strength of higher-order correlation functions in-
creases much slower for partially coherent particle sources
than for incoherent sources with an unresolvable halo of
long-lived resonances [2,1]. Even if the strength of the 2nd
and 3rd order Bose–Einstein correlations were similar in a
partially coherent and another incoherent particle source,
the strength of the 5th order correlation functions would
be a factor of 2 different between the partially coherent
and the fully chaotic cases [1]. In order to distinguish these
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scenarios, the Coulomb final state interactions must be
corrected for, and the error on the Coulomb correction
must be kept under control.

In a recent Letter, we have presented a refined treat-
ment of the 3-body Coulomb correction problem [11], with
application to new high-energy heavy ion data by the
NA44 experiment [12]. In the present work, we generalize
this 3-body Coulomb wave function integration method to
the case of n-particle Coulomb corrections.

2 Bose–Einstein n-particle correlations
and final state interactions

Let us summarize some properties of the Bose–Einstein
n-particle correlation functions using only the generic as-
pects of their derivation, and establish a link between the
theory of final state interactions in few body physics and
the theory of Bose–Einstein correlations in high-energy
particle and nuclear physics.

The n-particle Bose–Einstein correlation function is
defined as

Cn(k1, · · · ,kn) =
Nn(k1, · · · ,kn)

N1(k1) · · ·N1(kn)
, (1)

where Nn(k1, · · · ,kn) is the n-particle inclusive invariant
momentum distribution, while N1(k1) is the single parti-
cle invariant momentum distribution. It is quite remark-
able that this complicated object, which carries quantum-
mechanical information on the phase-space distribution of
particle production as well as on the possible partial coher-
ence of the source, can be expressed in a relatively simple,
straightforward manner both in the analytically solvable
pion-laser model of [13,4] as well as in the generic boosted-
current formalism of Gyulassy and Padula [14] as

Cn(k1, · · · ,kn) =

∑
σ(n)

n∏
i=1

G(ki,kσi
)

∏n
i=1G(ki,ki)

, (2)

where σ(n) stands for the set of permutations of indices
(1, 2, · · · , n) and σi denotes the element replacing element i
in a given permutation from the set of σ(n), and, regardless
of the details of the two different derivations,

G(ki,kj) = 〈a†(ki)a(kj)〉 (3)

stands for the expectation value of a†(ki)a(kj). In the
boosted-current formalism, the derivation is based on the
assumptions that

(i) the bosons are emitted from a semi-classical source,
where currents are strong enough so that the recoils
due to radiation can be neglected,

(ii) the particle sources are an incoherent random ensem-
ble of such currents, described by a boost-invariant
formulation [14], and

(iii) that the particles propagate as free plane waves after
production.

However, a formally similar result is obtained when
particle production happens in a correlated manner, and
even final state interactions between the produced parti-
cles are allowed for, generalizing the results of [4,15,16].

In the pion-laser model, the n-particle exclusive invari-
ant momentum distributions read

N (n)
n (k1, · · · ,kn) =

∑
σ(n)

n∏
i=1

G1(ki,kσi
), (4)

with
G1(kikj) = Tr{ρ̂1a

†(ki)a(kj)}, (5)

where ρ̂1 is the single particle density matrix in the limit
when higher-order Bose–Einstein correlations are negli-
gible. One can show [15,9], that the n-particle inclusive
spectrum has a similar structure, if the multiplicity dis-
tribution is Poissonian in the rare gas limit:

Nn(k1, · · · ,kn) =
∑
σ(n)

n∏
i=1

G(ki,kσi), (6)

G(ki,kj) =
∞∑

n=1

Gn(ki,kj). (7)

The functions Gn(ki,kj) can be considered as representa-
tives of order n symmetrization effects in exclusive events;
see [13,4,15] for more detailed definitions. The function
G(ki,kj) can be considered as the expectation value of
a†(ki)a(kj) in an inclusive sample of events, and this build-
ing block includes all the higher-order symmetrization ef-
fects. In the relativistic Wigner-function formalism, in the
plane wave approximation G(k1,k2) can be rewritten as

G(k1,k2) =
∫

d4xS(x,K12) exp(iq12 · x), (8)

K12 = 0.5(k1 + k2), (9)
q12 = k1 − k2, (10)

where a four-vector notation is introduced, and a ·b stands
for the inner product of four-vectors, and k = ((m2 +
k2)1/2,k). Due to the mass-shell constraints, i.e. Ek =
(m2 +k2)1/2, G depends only on six independent momen-
tum components. In any given frame, the boost-invariant
decomposition of (10) can be rewritten into the following
seemingly non-invariant form:

G(k1,k2) =
∫

d3xSK12(x) exp(iq12x), (11)

SK12(x) =
∫

dt exp(iβK12
q12t)S(x, t,K12), (12)

βK12
= (k1 + k2)/(E1 + E2). (13)

Note that the relative source function SK12(x) reduces to
a simple time integral over the source function S(x,K) in
the frame where the mean momentum of the pair (hence
the pair velocity βK12

) vanishes.
If n particles are emitted with similar momenta, so

that their n-particle Bose–Einstein correlation functions
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may be non-trivial, (5) and (7) will form the basis for
the evaluation of the Coulomb and strong final state in-
teraction effects on the observables. On this level, all the
correlations are build up from correlations of pairs of par-
ticles. This is due to the specific form of the density matrix
that includes just the right amount of stimulated emission
to make a further calculation straightforward. Note also
that a similar result can be obtained in the semi-classical
boosted-current formalism, where the particle production
has negligible effect on the elementary source of pion pro-
duction (bremsstrahlung-like radiation).

Let us point out that the exact solution of multi-
particle Bose–Einstein symmetrization in the pion-laser
model resulted in a Poisson cluster picture [15,4]. This im-
plies that in the rare gas limit, without Coulomb or other
final state interactions, the multi-boson correlations ap-
pear only as a random admixture of a small amount of cor-
related pairs to independently distributed single particles.
As the density increases, also the fraction of correlated
pairs increases and the admixture of independently dis-
tributed clusters of particle triplets, quartets, and higher-
order n-tuples becomes correspondingly more important.
The result of [15,4] indicates that below the onset of Bose–
Einstein condensation, a fully symmetrized multi-boson
system can be considered as a convolution of indepen-
dently distributed clusters of particle n-tuples, and it is
natural to apply Coulomb corrections within such clus-
ters of particles only. We shall also discuss that, when one
of the particles becomes separated from its cluster, the
relevant n-particle Coulomb correction factor will reduce
to the Coulomb correction factor of a smaller cluster that
contains the remaining n− 1 particles.

3 Quantum-mechanical treatment
of the Coulomb n-body problem

In order to treat correctly the Coulomb corrections to the
n-particle correlation function, knowledge of the n-body
Coulomb scattering wave function is required. We restrict
ourselves to the case that the transverse momenta of all
the particles in the final state in their center of mass are
small enough to make a non-relativistic approach sensible.
Hence the problem consists of finding the solution of the n-
charged particle Schrödinger equation when all n particles
are in the continuum.

Consider n distinguishable particles with masses mi

and charges ei, i = 1, 2, · · ·, n. Let xi and ki denote the
coordinate and momentum (three-)vectors, respectively,
of particle i. From these we construct in the usual man-
ner the relative coordinate rij = xi − xj and the rela-
tive momentum kij = (mjki −mikj)/(mi +mj) between
particles i and j, the corresponding reduced mass being
µij = mimj/(mi +mj).

The n-particle Schrödinger equation reads
H0 +

n∑
i<j=1

Vij − E


Ψ

(+)
k1···kn

(x1, · · · ,xn) = 0, (14)

where

E =
n∑

i=1

k2
i

2mi
> 0 (15)

is the total kinetic energy for n particles in the continuum.
H0 is the free Hamilton operator and

Vij(rij) = V S
ij(rij) + V C

ij (rij) (16)

the interaction potential between particles i and j, con-
sisting of a strong but short-range (V S

ij) plus the long-
range Coulomb interaction (V C

ij (rij) = eiej/ | rij |). Equa-
tion (14) has to be complemented by the complete set of
boundary conditions in order to obtain a unique solution.

Already for n = 3, the exact numerical solution of the
Schrödinger equation (14) for E > 0 is beyond present
means, partly for principal and partly for practical rea-
sons. For a brief discussion of the related difficulties see
[17]. But, at least the complete set of boundary condi-
tions to be imposed is nowadays known analytically [18,
19], in the form of the explicit solutions of the Schrödinger
equation in all asymptotic regions of the 3-particle con-
figuration space. Apart from the trivial 2-cluster region
relevant for an asymptotic configuration containing only
two particles one of which is a bound state of two par-
ticles, the asymptotic solution takes its simplest form in
the asymptotic region conventionally denoted by Ω0 and
characterized by the fact that – roughly speaking – all
three interparticle distances become uniformly large, i.e.
all | rij |→ ∞ (for a precise definition of the various asymp-
totic regions see [19]). There exist three more asymptotic
regions Ωij , i < j = 1, 2, 3, which are pertinent to sit-
uations characterized by final state interactions between
particles i and j. But the appropriate asymptotic solutions
are rather more complicated. From the physical point of
view the union of all these regions Ω0

⋃
Ω12

⋃
Ω13

⋃
Ω23

is relevant for the complete break-up into three free par-
ticles. As has been shown in [11], in spite of the lack of
an exact solution of the 3-body Schrödinger equation in
the whole 3-body configuration space, already knowledge
of the asymptotic solution in Ω0 led to a systematic, well-
controlled extraction of Coulomb effects in the 3-particle
Bose–Einstein correlation measurements, in contrast to
earlier, ad hoc 3-body Coulomb correction methods.

In the final states of heavy ion reactions, where a large
number of charged particle tracks appear, the mutual
macroscopically large separation of tracks is one of the
criteria of a clean measurement. This suggests that in or-
der to study n-body correlation functions, again knowl-
edge of the wave function in Ω(n)

0 , the region in n-particle
configuration space where all interparticle distances be-
come uniformly large, i.e., | rij |→ ∞ for all values of
(ij), may be sufficient. Here, uniform divergence of inter-
particle distances in Ω

(n)
0 means roughly that 0 <| rij |

/ | rkl |< ∞ for asymptotically large times for any two ar-
bitrarily chosen particle pairs, although the interparticle
distances themselves diverge for any pair. One immediate
consequence of this definition is that in Ω

(n)
0 the short-
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range interaction parts V S
ij play no rôle any longer and

can thus be neglected.
For want of an exact n-particle Coulomb scattering

wave function an approximate solution of (14) is sought.
For this purpose, let us introduce the continuum solution
of the 2-body Coulomb Schrödinger equation by

{
−∆rij

2µij
+ V C

ij (rij) − k2
ij

2µij

}
ψ

C(+)
kij

(rij) = 0, (17)

describing the relative motion of the two particles i and j
with energy k2

ij/2µij . The explicit solution is

ψ
C(+)
kij

(rij) = Nij eikijrij

× F [−iηij , 1; i(| kij || rij | −kijrij)], (18)

with Nij = e−πηij/2Γ (1 + iηij), and ηij = eiejµij/ | rij |
being the appropriate Coulomb parameter. F [a, b;x] is the
confluent hypergeometric function and Γ (x) the Gamma
function. Thus the following ansatz for an approximate
n-particle Coulomb wave function is made:

Ψ
(+)
k1,···,kn

(x1, · · · ,xn) ∼
n∏

i<j=1

ψ
C(+)
kij

(rij). (19)

This ansatz can be justified by the following argu-
ments.

(i) The wave function (19) is asymptotically correct in
the asymptotic region Ω

(n)
0 ; that is, it is the lead-

ing term if all interparticle separations go to infinity
of the (unknown) exact solution of the Schrödinger
equation (14) [18]. Of course, for non-asymptotic par-
ticle separations it represents a theoretically not com-
pulsory though plausible extrapolation.

(ii) In the formal, time-dependent scattering theory the
basic object is the MØLLER operator which maps
the free n-particle state onto the corresponding scat-
tering state. The mathematically rigorous definition
of the n-charged particle MØLLER operator [20] re-
quires, in contrast to the case of purely short-range
interactions between the particles, the introduction
of a ‘renormalization factor’. The latter has the form
of a product of n(n − 1)/2 renormalization factors
each of which is appropriate for the definition of the
MØLLER operator for one of the possible pairings of
the charged particles. Obviously, the ansatz (19) of
the n-particle wave function is consistent with this
renormalization prescription.

(iii) By suitably decomposing the (stationary) MØLLER
operator of an n-body system into a chain of
MØLLER operators of subsystems with fewer inter-
acting particles, a wave function of the type (19) has
been suggested as a lowest-order term of an n-particle
Coulomb wave function in [21] to be used in all of
configuration space. The assumptions entering were
neglect of genuine higher-than-two particle correla-
tions in the wave function, which is justified in Ω(n)

0 ,

and restriction of all 2-particle scatterings onto their
respective energy shells.

(iv) The wave function (19) coincides for any selected par-
ticle triplet with the form pertinent to the given pre-
selected triplet, if the corresponding interparticle dis-
tances diverge [11].

(v) For n = 3, such an approximate wave function has
been proposed in [23,24]. Although it ceases to be
a solution of the Schrödinger equation (14) for non-
asymptotic values of the relative coordinates, it is
nevertheless widely used, with considerable success,
to calculate cross sections for the ionization of hydro-
gen atoms by the impact of an (energetic) electron.

The foregoing discussion makes it clear that the ansatz
(19) is justifiable only for sufficiently large interparticle
separations, a condition which is not easily translated into
an experimentally accessible criterion. However, for n = 3
such a criterion has been established, namely that the to-
tal kinetic energy E

(3)
total of three particles of unit charge

be at least 0.2h̄c/RG(fm) which equals 10 MeV for a typ-
ical source size RG = 4 fm [11]. Thus, assuming also for
an arbitrary number n of particles (again for simplicity
taken to have unit charge) the total kinetic energy E(n)

total
to be equally distributed over the relative kinetic energies
between each pair, the latter criterion generalizes to the
condition E

(n)
total ≥ 0.033n(n − 1)h̄c/RG(fm) MeV. Hence,

for the following we assume the n-particle Coulomb wave
function to be given everywhere as

Ψ
(+)
k1···kn

(x1, · · · ,xn) ≈ Ψ̃
(+)
k1···kn

(x1, · · · ,xn),

:=
√

N (n)
n∏

i<j=1

ψ
C(+)
kij

(rij),

for E(n)
total ≥ 0.066

n(n− 1)
2

h̄c

RG(fm)
MeV, (20)

where N (n) is an undetermined overall normalization con-
stant. This is the building block for a properly symmetrized
n-body wave function where the bosonic or fermionic na-
ture of any subset of identical particles has to be taken into
account in the symmetrization (or anti-symmetrization)
process in the standard manner [22].

In this paper we explicitly present the fully
symmetrized wave function only for the case of n iden-
tical charged bosons, as to our knowledge measurements
in high-energy physics attempting to reveal the strength
of the multi-particle Bose–Einstein correlation effects [12,
10] exist only for this special case.

The fully symmetrized n-particle wave function has the
form

Ψ̃
(+)S
k1···kn

(x1, · · · ,xn)

=
1√
n!

∑
σ(n)

Ψ̃
(+)
k1···kn

(xσ1 , · · · ,xσn
), (21)

where σ(n) stands for the set of permutations of n different
indices, and σi for the permuted value of the index i in
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one of the permutations belonging to the set σ(n). Using
the ansatz (20), the above equation simplifies to

Ψ̃
(+)S
k1···kn

(x1, · · · ,xn)

=

√
N (n)
√
n!

∑
σ(n)

n∏
i<j=1

ψ
C(+)
kij

(rσiσj
), (22)

which contains only the 2-body relative Coulomb wave
functions.

The physics of the above ansatz is very simple: if all
n final charges emerge into the continuum and if all are
well separated from the other tracks, only the pairwise
Coulomb relative wave functions play a rôle. However, rel-
ative Coulomb wave functions have to be taken into ac-
count for all possible particle pairs as the Coulomb inter-
action is of long range. Graphically, if we represent the n
particles by n crosses, the relative Coulomb wave function
between particle i and j can be represented by a line con-
necting cross i with cross j, and the full, asymptotically
correct n-particle Coulomb wave function is represented
by connecting each of the n crosses with the n− 1 others
by forming a polygon with n corners and n(n− 1)/2 lines
(diagonals and edges).

One can apply a simple approximation to (22) which
preserves at least some features of the Coulomb distor-
tion effects. It consists in neglecting, for any 2-particle
Coulomb wave function ψ

C(+)
kij

(rij), the hypergeometric
function in the exact solution (18) and retaining only the
part eikijrijNij . After evaluating the double sums over all
permutations of σn in a product, one finds∣∣∣Ψ̃ (+)S

k1···kn
(x1, · · · ,xn)

∣∣∣2

=
N (n)

n!


 n∏

i<j=1

Gij




∣∣∣∣∣∣
∑
σ(n)

n∏
i<j=1

eikijrσiσj

∣∣∣∣∣∣
2

=
N (n)

N0


 n∏

i<j=1

Gij


 ∣∣∣Ψ (0)S

k1···kn
(x1, · · · ,xn)

∣∣∣2 . (23)

In the last line, the symmetrized n-particle wave function
for neutral particles Ψ (0)S

k1···kn
(x1, · · · ,xn) with its own nor-

malization constant N0 has been introduced. As usual,

Gij := |Nij |2 = e−πηij |Γ (1 + iηij)|2 , (24)

is the Gamow penetration factor for the particle pair (ij).
It thus follows that the proper generalization of the

Gamow penetration factor for n-charged particles reads

G1,···,n =
n∏

i<j=1

Gij . (25)

This expression contains n(n−1)/2 factors, corresponding
to all possible pairings (ij). Moreover, it is self-consistent:
if the momenta k′, k′′, · · · , k(l) of l particles approach in-
finity such that for no two momenta k(i) and k(j) the cor-
responding relative momentum remains finite, we have

lim
k′→∞

· · · lim
k(l)→∞

G1,···,n = Gα1,···,αn−l
, (26)

where the remaining n−l particles whose momenta remain
finite are denoted symbolically by α1, · · · , αn−l. Specifi-
cally,

lim
kn→∞

G1,···,n = G1,···,(n−1). (27)

An explicit check for n = 4 shows that, indeed,

lim
k4→∞

G1,2,3,4 = lim
k4→∞

G12G13G14G23G24G34,

= G12G13G23 = G1,2,3. (28)

Hence, the generalization (25) of the Gamow correction
factor to arbitrary values of n is done in a self-consistent
manner that satisfies its physically expected reduction
property.

This result was substantiated for the case of n identi-
cal charged bosons. In general, the final state of a high-
energy heavy ion reaction contains many different kind
of particles, with different charges and quantum statisti-
cal properties. Nevertheless, the ansatz given in (20) can
be utilized for any values of the charges, and the result
can be symmetrized for a generic mixture of particles as
prescribed in [22].

Let us add two comments.

(i) As mentioned above, a wave function of the type (19)
implies that the relative motion of each of the pairs of
particles is independent of that of the other pairs, i.e.,
that no correlations between the motions of the parti-
cle pairs occur. In other words, the proposed form of
the factorized n-particle Coulomb wave function does
not include genuine higher-order correlations, only
those that can be built up from 2-particle Coulomb
correlations. This is the same level of approximation
that is used to derive (2), the generic form of the n-
particle Bose–Einstein correlation functions. Results
of [4,15] suggest that (2) is valid only if the density
of bosons is below the limit of Bose–Einstein conden-
sation.

(ii) It should be kept in mind that the extrapolation out of
the region Ω(n)

0 implied by (19) is highly non-unique.
Even for the 3-body Coulomb problem, various differ-
ent wave functions which, of course, coincide asymp-
totically in Ω

(3)
0 with (19) have been, and are still

being, developed.

4 Application to high-energy heavy ion
and particle collisions

The correlation function measuring the enhanced proba-
bility for emission of n identical Bose particles is given
by (1). This correlation function is usually, due to mea-
ger statistics, only measured as a function of the Lorentz
invariant Qn defined by the relation

Q2
n =

n∑
i<j=1

q2ij , (29)

where qij = ki − kj , and where ki is the four-momentum
of particle i.
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Fig. 1. Filled circles stand for the Coulomb correction factor
of 5-particle Bose–Einstein correlation functions for a source
size of R = 1 fm as obtained from the numerical integration of
the 5-body Coulomb wave function, while the squares indicate
the results of the less substantiated 5-body Gamow corrections;
the inset shows the ratio of these two correction factors. Lines
are shown to guide the eye

We can now calculate the Coulomb effects on the n-
particle correlation function using

KCoulomb(Qn)

=

∫ ∏n
i=1 d3xiρ(xi)

∣∣∣Ψ̃ (+)S
k1···kn

(x1, · · · ,xn)
∣∣∣2∫ ∏n

i=1 d3xiρ(xi)
∣∣∣Ψ (0)S

k1···kn
(x1, · · · ,xn)

∣∣∣2 , (30)

where ρ(xi) is the density distribution of the source for
particle i, taken as a Gaussian distribution of width R
in all three spatial directions. This formulation makes it
possible to extract information on the source size R, and
to compare this value with that extracted by means of
a generalized n-particle Gamow approximation through
K

(G)
Coulomb(Qn) =

∏n
i<j=1Gij . To this purpose we use the

NA44 data sample of three pion events produced in S–Pb
collisions at CERN [12].

We have calculated the Coulomb correction factor, i.e.
K−1

Coulomb(Qn) [12], for source radius values R = 1, 5, and
10 fm, for n = 2, 3, 4, and 5 particle correlations. The radii
were chosen to be in the range of interest for high-energy
particle and high-energy heavy ion physics. The results
are compared to the generalized Gamow approximation.
We have checked that in the limit R → 0 the n-particle
Gamow approximation is indeed recovered numerically.

In case of a characteristic 1 fm effective source size,
typical for Bose–Einstein correlation functions in various
elementary particle reactions, the difference between the
n-particle Gamow and Coulomb wave function corrections
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Fig. 2. Same as Fig. 1 but for n = 4 and R = 5 fm

were smaller than 10% for n = 4 and 5 particles, the
n = 5 case being shown in Fig. 1. However, for future
measurements of 5-particle Bose–Einstein correlations in
particle physics that aim at a precision better than 5%
relative error, Coulomb wave function integration will be
a necessity.

For source sizes of 5 or 10 fm, that are the characteristic
expectations for Au + Au reactions at RHIC, the differ-
ence between the results of the Gamow and Coulomb wave
function corrections increased dramatically, see Figs. 2–4.
We find that for a source radius of 5 fm, we need to take
this detailed calculation into account already for the pre-
cise determination of the 3-particle correlation function.
However, with increasing number of particles, the devi-
ation between the n-particle Gamow and the n-particle
Coulomb wave function integration method increases dras-
tically. For 5-particle Coulomb correction, the better sub-
stantiated Coulomb wave function integration method
yields a deviation factor of 2 from the naive generalized
Gamow method. Finally, we note that systematic improve-
ments of our treatment are possible by

(i) including also effects of strong interactions between
the particles of each pair,

(ii) replacing the simple product of Gaussians by a more
realistic model for the production of particle n-tuples,
and

(iii) invoking improved n-body Coulomb wave functions
that are correct in a larger region of n-body configu-
ration space than Ω(n)

0 .

However, corrections (i) and (ii) are estimated to be
small, as

(1) the final state Coulomb interaction dominates over the
final state strong interaction due to its long range and
the relatively large source size, and
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Fig. 3. Same as Fig. 1 but for n = 5 and R = 5 fm
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Fig. 4. Same as Fig. 1 but for n = 5 and R = 10 fm

(2) the effective source of particles is known to be approx-
imately Gaussian from detailed studies of two pion
correlations.

Correction (iii) is also expected to be small, as a clean
measurement of particle n-tuples will likely require that
these particles be in Ω

(n)
0 ; however, one has to wait till

4th and 5th order correlations are measured in heavy ion
collisions in order to determine the more detailed experi-
mental conditions.

5 Summary and conclusions

On the basis of an explicit, analytically given form of the
n-body Coulomb wave function that is – at least asymp-
totically – correct in a large region of n-body configuration
space, we have developed a new method to systematically
correct for explicit many-body Coulomb effects which is
applicable to data analysis in a broad range of measure-
ments in high-energy particle and heavy ion physics. A
generalized Gamow correction factor has been established
as a limiting case of vanishing source sizes.

Specifically, we have worked out our approach for 3,
4, and 5 identical charged particles and have tested it for
Gaussian source sizes with R = 1, 5, and 10 fm. We have
numerically found that the generalized Gamow approxi-
mation is not reliable enough to determine the magnitude
on the 5% level of the 5-body Coulomb correction factor if
R = 1 fm, the characteristic length scale of strong interac-
tions in high-energy particle physics. The range of interest
in high-energy heavy ion physics was probed in the R = 5
and 10 fm cases, and systematic errors, as large as 100%,
were shown to be generated with the earlier Coulomb cor-
rection techniques for the correlation function of five par-
ticles.
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